Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables
نویسندگان
چکیده
We introduce a technique for the dimension reduction of a class of PDE constrained optimization problems governed by linear time dependent advection diffusion equations for which the optimization variables are related to spatially localized quantities. Our approach uses domain decomposition applied to the optimality system to isolate the subsystem that explicitly depends on the optimization variables from the remaining linear optimality subsystem. We apply balanced truncation model reduction to the linear optimality subsystem. The resulting coupled reduced optimality system can be interpreted as the optimality system of a reduced optimization problem. We derive estimates for the error between the solution of the original optimization problem and the solution of the reduced problem. The approach is demonstrated numerically on an optimal control problem and on a shape optimization problem.
منابع مشابه
Numerical Techniques for Optimization Problems with PDE Constraints
Optimization problems with partial differential equation (PDE) constraints arise in many science and engineering applications. Their robust and efficient solution present many mathematical challenges and requires a tight integration of properties and structures of the underlying problem, of fast numerical PDE solvers, and of numerical nonlinear optimization. This workshop brought together exper...
متن کاملNon-Conforming Localized Model Reduction with Online Enrichment: Towards Optimal Complexity in PDE constrained Optimization
We propose a new non-conforming localized model reduction paradigm for efficient solution of large scale or multiscale PDE constrained optimization problems. The new conceptual approach goes beyond the classical offline/online splitting of traditional projection based model order reduction approaches for the underlying state equation, such as the reduced basis method. Instead of first construct...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملVOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
متن کاملDomain Decomposition Methods for PDE Constrained Optimization Problems
Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computat. and Visualiz. in Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2010